Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Drug-Resistant Epimutants Exhibit Organ-Specific Stability and Induction during Murine Infections Caused by the Human Fungal Pathogen Mucor circinelloides.

Identifieur interne : 000358 ( Main/Exploration ); précédent : 000357; suivant : 000359

Drug-Resistant Epimutants Exhibit Organ-Specific Stability and Induction during Murine Infections Caused by the Human Fungal Pathogen Mucor circinelloides.

Auteurs : Zanetta Chang [États-Unis] ; Joseph Heitman [États-Unis]

Source :

RBID : pubmed:31690679

Descripteurs français

English descriptors

Abstract

The environmentally ubiquitous fungus Mucor circinelloides is a primary cause of the emerging disease mucormycosis. Mucor infection is notable for causing high morbidity and mortality, especially in immunosuppressed patients, while being inherently resistant to the majority of clinically available antifungal drugs. A new, RNA interference (RNAi)-dependent, and reversible epigenetic mechanism of antifungal resistance-epimutation-was recently discovered in M. circinelloides However, the effects of epimutation in a host-pathogen setting were unknown. We employed a systemic, intravenous murine model of Mucor infection to elucidate the potential impact of epimutation in vivo Infection with an epimutant strain resistant to the antifungal agents FK506 and rapamycin revealed that the epimutant-induced drug resistance was stable in vivo in a variety of different organs and tissues. Reversion of the epimutant-induced drug resistance was observed to be more rapid in isolates from the brain than in isolates recovered from the liver, spleen, kidney, or lungs. Importantly, infection with a wild-type strain of Mucor led to increased rates of epimutation after strains were recovered from organs and exposed to FK506 stress in vitro. Once again, this effect was more pronounced in strains recovered from the brain than from other organs. In summary, we report the rapid induction and reversion of RNAi-dependent drug resistance after in vivo passage through a murine model, with pronounced impact in strains recovered from brain. Defining the role played by epimutation in drug resistance and infection advances our understanding of Mucor and other fungal pathogens and may have implications for antifungal therapy.IMPORTANCE The emerging fungal pathogen Mucor circinelloides causes a severe infection, mucormycosis, which leads to considerable morbidity and mortality. Treatment of Mucor infection is challenging because Mucor is inherently resistant to nearly all clinical antifungal agents. An RNAi-dependent and reversible mechanism of antifungal resistance, epimutation, was recently reported for Mucor Epimutation has not been studied in vivo, and it was unclear whether it would contribute to antifungal resistance observed clinically. We demonstrate that epimutation can both be induced and reverted after in vivo passage through a mouse; rates of both induction and reversion are higher after brain infection than after infection of other organs (liver, spleen, kidneys, or lungs). Elucidating the roles played by epimutation in drug resistance and infection will improve our understanding of Mucor and other fungal pathogens and may have implications for antifungal treatment.

DOI: 10.1128/mBio.02579-19
PubMed: 31690679
PubMed Central: PMC6831780


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Drug-Resistant Epimutants Exhibit Organ-Specific Stability and Induction during Murine Infections Caused by the Human Fungal Pathogen Mucor circinelloides.</title>
<author>
<name sortKey="Chang, Zanetta" sort="Chang, Zanetta" uniqKey="Chang Z" first="Zanetta" last="Chang">Zanetta Chang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Duke University, Durham, North Carolina, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Duke University, Durham, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Heitman, Joseph" sort="Heitman, Joseph" uniqKey="Heitman J" first="Joseph" last="Heitman">Joseph Heitman</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Duke University, Durham, North Carolina, USA heitm001@duke.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Duke University, Durham, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31690679</idno>
<idno type="pmid">31690679</idno>
<idno type="doi">10.1128/mBio.02579-19</idno>
<idno type="pmc">PMC6831780</idno>
<idno type="wicri:Area/Main/Corpus">000163</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000163</idno>
<idno type="wicri:Area/Main/Curation">000163</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000163</idno>
<idno type="wicri:Area/Main/Exploration">000163</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Drug-Resistant Epimutants Exhibit Organ-Specific Stability and Induction during Murine Infections Caused by the Human Fungal Pathogen Mucor circinelloides.</title>
<author>
<name sortKey="Chang, Zanetta" sort="Chang, Zanetta" uniqKey="Chang Z" first="Zanetta" last="Chang">Zanetta Chang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Duke University, Durham, North Carolina, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Duke University, Durham, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Heitman, Joseph" sort="Heitman, Joseph" uniqKey="Heitman J" first="Joseph" last="Heitman">Joseph Heitman</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Duke University, Durham, North Carolina, USA heitm001@duke.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Duke University, Durham, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">mBio</title>
<idno type="eISSN">2150-7511</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Antifungal Agents (pharmacology)</term>
<term>Disease Models, Animal (MeSH)</term>
<term>Drug Resistance, Fungal (drug effects)</term>
<term>Drug Resistance, Fungal (genetics)</term>
<term>Epigenesis, Genetic (drug effects)</term>
<term>Epigenesis, Genetic (genetics)</term>
<term>Humans (MeSH)</term>
<term>Male (MeSH)</term>
<term>Mice (MeSH)</term>
<term>Mice, Inbred BALB C (MeSH)</term>
<term>Mucor (drug effects)</term>
<term>Mucor (genetics)</term>
<term>Mucormycosis (drug therapy)</term>
<term>Mucormycosis (microbiology)</term>
<term>RNA Interference (drug effects)</term>
<term>RNA Interference (physiology)</term>
<term>Sirolimus (pharmacology)</term>
<term>Tacrolimus (pharmacology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Antifongiques (pharmacologie)</term>
<term>Humains (MeSH)</term>
<term>Interférence par ARN (effets des médicaments et des substances chimiques)</term>
<term>Interférence par ARN (physiologie)</term>
<term>Modèles animaux de maladie humaine (MeSH)</term>
<term>Mucor (effets des médicaments et des substances chimiques)</term>
<term>Mucor (génétique)</term>
<term>Mucormycose (microbiologie)</term>
<term>Mucormycose (traitement médicamenteux)</term>
<term>Mâle (MeSH)</term>
<term>Résistance des champignons aux médicaments (effets des médicaments et des substances chimiques)</term>
<term>Résistance des champignons aux médicaments (génétique)</term>
<term>Sirolimus (pharmacologie)</term>
<term>Souris (MeSH)</term>
<term>Souris de lignée BALB C (MeSH)</term>
<term>Tacrolimus (pharmacologie)</term>
<term>Épigenèse génétique (effets des médicaments et des substances chimiques)</term>
<term>Épigenèse génétique (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Antifungal Agents</term>
<term>Sirolimus</term>
<term>Tacrolimus</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Drug Resistance, Fungal</term>
<term>Epigenesis, Genetic</term>
<term>Mucor</term>
<term>RNA Interference</term>
</keywords>
<keywords scheme="MESH" qualifier="drug therapy" xml:lang="en">
<term>Mucormycosis</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Interférence par ARN</term>
<term>Mucor</term>
<term>Résistance des champignons aux médicaments</term>
<term>Épigenèse génétique</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Drug Resistance, Fungal</term>
<term>Epigenesis, Genetic</term>
<term>Mucor</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Mucor</term>
<term>Résistance des champignons aux médicaments</term>
<term>Épigenèse génétique</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Mucormycose</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Mucormycosis</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Antifongiques</term>
<term>Sirolimus</term>
<term>Tacrolimus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Interférence par ARN</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>RNA Interference</term>
</keywords>
<keywords scheme="MESH" qualifier="traitement médicamenteux" xml:lang="fr">
<term>Mucormycose</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Disease Models, Animal</term>
<term>Humans</term>
<term>Male</term>
<term>Mice</term>
<term>Mice, Inbred BALB C</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Humains</term>
<term>Modèles animaux de maladie humaine</term>
<term>Mâle</term>
<term>Souris</term>
<term>Souris de lignée BALB C</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The environmentally ubiquitous fungus
<i>Mucor circinelloides</i>
is a primary cause of the emerging disease mucormycosis.
<i>Mucor</i>
infection is notable for causing high morbidity and mortality, especially in immunosuppressed patients, while being inherently resistant to the majority of clinically available antifungal drugs. A new, RNA interference (RNAi)-dependent, and reversible epigenetic mechanism of antifungal resistance-epimutation-was recently discovered in
<i>M. circinelloides</i>
However, the effects of epimutation in a host-pathogen setting were unknown. We employed a systemic, intravenous murine model of
<i>Mucor</i>
infection to elucidate the potential impact of epimutation
<i>in vivo</i>
Infection with an epimutant strain resistant to the antifungal agents FK506 and rapamycin revealed that the epimutant-induced drug resistance was stable
<i>in vivo</i>
in a variety of different organs and tissues. Reversion of the epimutant-induced drug resistance was observed to be more rapid in isolates from the brain than in isolates recovered from the liver, spleen, kidney, or lungs. Importantly, infection with a wild-type strain of
<i>Mucor</i>
led to increased rates of epimutation after strains were recovered from organs and exposed to FK506 stress
<i>in vitro.</i>
Once again, this effect was more pronounced in strains recovered from the brain than from other organs. In summary, we report the rapid induction and reversion of RNAi-dependent drug resistance after
<i>in vivo</i>
passage through a murine model, with pronounced impact in strains recovered from brain. Defining the role played by epimutation in drug resistance and infection advances our understanding of
<i>Mucor</i>
and other fungal pathogens and may have implications for antifungal therapy.
<b>IMPORTANCE</b>
The emerging fungal pathogen
<i>Mucor circinelloides</i>
causes a severe infection, mucormycosis, which leads to considerable morbidity and mortality. Treatment of
<i>Mucor</i>
infection is challenging because
<i>Mucor</i>
is inherently resistant to nearly all clinical antifungal agents. An RNAi-dependent and reversible mechanism of antifungal resistance, epimutation, was recently reported for
<i>Mucor</i>
Epimutation has not been studied
<i>in vivo</i>
, and it was unclear whether it would contribute to antifungal resistance observed clinically. We demonstrate that epimutation can both be induced and reverted after
<i>in vivo</i>
passage through a mouse; rates of both induction and reversion are higher after brain infection than after infection of other organs (liver, spleen, kidneys, or lungs). Elucidating the roles played by epimutation in drug resistance and infection will improve our understanding of
<i>Mucor</i>
and other fungal pathogens and may have implications for antifungal treatment.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31690679</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>05</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2150-7511</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>10</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2019</Year>
<Month>11</Month>
<Day>05</Day>
</PubDate>
</JournalIssue>
<Title>mBio</Title>
<ISOAbbreviation>mBio</ISOAbbreviation>
</Journal>
<ArticleTitle>Drug-Resistant Epimutants Exhibit Organ-Specific Stability and Induction during Murine Infections Caused by the Human Fungal Pathogen Mucor circinelloides.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e02579-19</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/mBio.02579-19</ELocationID>
<Abstract>
<AbstractText>The environmentally ubiquitous fungus
<i>Mucor circinelloides</i>
is a primary cause of the emerging disease mucormycosis.
<i>Mucor</i>
infection is notable for causing high morbidity and mortality, especially in immunosuppressed patients, while being inherently resistant to the majority of clinically available antifungal drugs. A new, RNA interference (RNAi)-dependent, and reversible epigenetic mechanism of antifungal resistance-epimutation-was recently discovered in
<i>M. circinelloides</i>
However, the effects of epimutation in a host-pathogen setting were unknown. We employed a systemic, intravenous murine model of
<i>Mucor</i>
infection to elucidate the potential impact of epimutation
<i>in vivo</i>
Infection with an epimutant strain resistant to the antifungal agents FK506 and rapamycin revealed that the epimutant-induced drug resistance was stable
<i>in vivo</i>
in a variety of different organs and tissues. Reversion of the epimutant-induced drug resistance was observed to be more rapid in isolates from the brain than in isolates recovered from the liver, spleen, kidney, or lungs. Importantly, infection with a wild-type strain of
<i>Mucor</i>
led to increased rates of epimutation after strains were recovered from organs and exposed to FK506 stress
<i>in vitro.</i>
Once again, this effect was more pronounced in strains recovered from the brain than from other organs. In summary, we report the rapid induction and reversion of RNAi-dependent drug resistance after
<i>in vivo</i>
passage through a murine model, with pronounced impact in strains recovered from brain. Defining the role played by epimutation in drug resistance and infection advances our understanding of
<i>Mucor</i>
and other fungal pathogens and may have implications for antifungal therapy.
<b>IMPORTANCE</b>
The emerging fungal pathogen
<i>Mucor circinelloides</i>
causes a severe infection, mucormycosis, which leads to considerable morbidity and mortality. Treatment of
<i>Mucor</i>
infection is challenging because
<i>Mucor</i>
is inherently resistant to nearly all clinical antifungal agents. An RNAi-dependent and reversible mechanism of antifungal resistance, epimutation, was recently reported for
<i>Mucor</i>
Epimutation has not been studied
<i>in vivo</i>
, and it was unclear whether it would contribute to antifungal resistance observed clinically. We demonstrate that epimutation can both be induced and reverted after
<i>in vivo</i>
passage through a mouse; rates of both induction and reversion are higher after brain infection than after infection of other organs (liver, spleen, kidneys, or lungs). Elucidating the roles played by epimutation in drug resistance and infection will improve our understanding of
<i>Mucor</i>
and other fungal pathogens and may have implications for antifungal treatment.</AbstractText>
<CopyrightInformation>Copyright © 2019 Chang and Heitman.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Chang</LastName>
<ForeName>Zanetta</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Duke University, Durham, North Carolina, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Heitman</LastName>
<ForeName>Joseph</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Duke University, Durham, North Carolina, USA heitm001@duke.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R37 AI039115</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI039115</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI112595</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI050113</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 GM007171</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>11</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>mBio</MedlineTA>
<NlmUniqueID>101519231</NlmUniqueID>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000935">Antifungal Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>WM0HAQ4WNM</RegistryNumber>
<NameOfSubstance UI="D016559">Tacrolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000935" MajorTopicYN="N">Antifungal Agents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004195" MajorTopicYN="N">Disease Models, Animal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025141" MajorTopicYN="N">Drug Resistance, Fungal</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044127" MajorTopicYN="N">Epigenesis, Genetic</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008807" MajorTopicYN="N">Mice, Inbred BALB C</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009089" MajorTopicYN="N">Mucor</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009091" MajorTopicYN="N">Mucormycosis</DescriptorName>
<QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D034622" MajorTopicYN="N">RNA Interference</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016559" MajorTopicYN="N">Tacrolimus</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">antifungal resistance</Keyword>
<Keyword MajorTopicYN="Y">epigenetics</Keyword>
<Keyword MajorTopicYN="Y">filamentous fungi</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>11</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>11</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>5</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31690679</ArticleId>
<ArticleId IdType="pii">mBio.02579-19</ArticleId>
<ArticleId IdType="doi">10.1128/mBio.02579-19</ArticleId>
<ArticleId IdType="pmc">PMC6831780</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Lab Anim (NY). 2008 Jan;37(1):26-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18094699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2014 Sep 25;513(7519):555-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25079329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Food Microbiol. 2016 Jul 2;228:14-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27085035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2012 Dec 6;367(23):2214-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23215557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Soc Exp Biol Med. 1984 Nov;177(2):347-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6091149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2019 Feb 11;15(2):e1007957</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30742617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2011 Aug 4;118(5):1216-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21622653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Fungi (Basel). 2019 Mar 21;5(1):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30901907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Antibiot (Tokyo). 1975 Oct;28(10):727-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1102509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2015 Dec;59(12):7715-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26438490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Fungi (Basel). 2019 Mar 27;5(2):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30934788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lab Anim (NY). 2011 May;40(5):155-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21508954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pediatr Infect Dis J. 2014 May;33(5):472-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24667485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2011 Jun;7(6):e1002086</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21698218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2010 Feb;47(2):81-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19595784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Infect Dis. 2016 Dec 1;16(1):730</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27905900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Med Mycol. 2016 Aug 1;54(6):567-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27118802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2003 Sep;47(9):2717-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12936965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2006 Aug;61(4):1023-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16879651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2015 Sep;97(5):844-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26010100</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2017 Mar 24;13(3):e1006686</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28339467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2017 Jan 20;13(1):e1006150</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28107502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2015 Apr 13;11(4):e1005168</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25875805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microbiol. 2019 Jun;57(6):509-520</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31012059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 1996 Nov 30;348(9040):1523-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8942815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2003 Aug 1;22(15):3983-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12881432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2019 Feb 15;68(5):850-853</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30299481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1962 Oct;84:829-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13969719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2013;9(9):e1003625</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24039585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2009 Sep 15;200(6):1002-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19659439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prep Biochem Biotechnol. 2017 Nov 26;47(10):970-976</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28857682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2017 Jul 5;7(7):2047-2054</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28476909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Microbiol Infect. 2019 Jan;25(1):26-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30036666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 1997 Jan;41(1):196-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8980781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Antimicrob Agents. 2017 Nov;50(5):617-621</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28802855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2005 Sep 1;41(5):634-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16080086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Antibiot (Tokyo). 1987 Sep;40(9):1249-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2445721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1997 Jan 2;400(1):80-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9000517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2012 Mar;11(3):270-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22210828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2014 Jul 08;5(4):e01390-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25006230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Infect Dis. 2016 Jul;16(7):828-837</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26969258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2018 May 22;9(3):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29789366</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Caroline du Nord</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Caroline du Nord">
<name sortKey="Chang, Zanetta" sort="Chang, Zanetta" uniqKey="Chang Z" first="Zanetta" last="Chang">Zanetta Chang</name>
</region>
<name sortKey="Heitman, Joseph" sort="Heitman, Joseph" uniqKey="Heitman J" first="Joseph" last="Heitman">Joseph Heitman</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000358 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000358 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31690679
   |texte=   Drug-Resistant Epimutants Exhibit Organ-Specific Stability and Induction during Murine Infections Caused by the Human Fungal Pathogen Mucor circinelloides.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31690679" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020